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Abstract—Conventional tracking-by-detection approaches for
visual object tracking often assume that the task at hand is
a binary foreground-versus-background classification problem
where the background is a single, generic, and all-inclusive class.
In contrast, here we argue that the background appearance,
for the most part, possesses a more complicated structure that
would benefit from further partitioning into multiple contextual
clusters. Our observation is that, although the background class
is contemplated to contain a vast intra-class variation, during
the tracking process only a small portion of this diversity is
present at the current frame around the foreground object.
This observation motivates us to build multiple fine-grained
foreground-versus-contextual-cluster models that provide more
discriminative classifications, and consequently more robust and
accurate foreground object tracking. For each cluster, we employ
a structured output support vector machine (SSVM), and in an
online manner, we combine the responses of multiple classifiers.
To this end, we apply a top level SSVM that models the tracked
foreground object. We show that our refined modeling of the
background is better than naively growing the complexity of
a single foreground-background classifier, i.e. increasing the
number of support vectors that existing approaches rely on,
which cause over-fitting issues. Our extensive evaluations on large
benchmark datasets demonstrate that our tracker consistently
outperforms the current state-of-the-art while having comparable
computational requirements.

Index Terms—Tracking-by-detection, contextual clustering,
fine-grained model, support vector machine (SVM).

I. INTRODUCTION

V ISUAL object tracking confronts with major challenges
due to object appearance and scene illumination varia-

tion, partial and full occlusion, background clutter, and noise.
To build a tracker that is robust to such issues, tracking-
by-detection techniques learn adaptive object models, e.g.
classifiers, in an online fashion and then search for the best
match in the consecutive frames.

Depending on the basic learning strategy, tracking-by-
detection approaches can be grouped into generative and
discriminative learning categories. Generative learning based
models mainly concentrate on how to construct an object rep-
resentation in specific feature spaces, including the subspace
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Fig. 1: Instead of training only one classifier to separate the set
of positive samples and the set of negative samples, this paper
explores the implicit data structure underneath the negative
samples by fine-grain partitioning the negatives into multiple
clusters. Note that, each background cluster is meaningful,
either corresponding to the shifted-versions of the object or
further away yet visually similar negative samples of pure
background samples.

learning [1], sparse representation [2], [3], [4] and so on [5].
A known drawback of these methods is that they often ignore
the influence of the background, and consequently suffer from
distractions caused by the background regions with similar
appearance to the foreground object. In contrast, discriminative
learning based appearance models aim to maximize the inter-
class separability between the object and background regions
using discriminative learning techniques, including SVMs [6],
[7], [8], [9], [10], random forest [11], and multiple instance
learning [12], to name a few. Among the main challenges
of discriminative methods one can consider how to maintain
positive and negative training samples, and how to build
a powerful classifier out of them. As the number of the
processed frames increases, the number of positive, and in
particular negative, samples could inflate. Thus, the design of
an adequate model update strategy for discriminative learning
is not trivial.

In this paper, we propose to exploit the underlying distribu-
tion structure of the training samples to reduce the burden of
the classification task, hence increase the discriminative power
of the object tracker. To this end, we utilize the weak visual
structure of background, i.e., the negative sample space, by ex-
plicitly grouping background samples into multiple contextual
clusters. Here, a contextual cluster means a group of samples
that exhibit similar visual properties and possibly spatial
proximity as dissected more in the experimental section.

We observe that these contextual clusters emerge mainly
as two distinct groups: the shifted-versions of the object
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window, which help better localization albeit cause confusion
or drift if not modeled properly, and ordinary non-object like
background samples, which encourage better detection yet can
cause sudden jumps in the subsequent frames if neglected.
We show that explicitly building multiple foreground-versus-
cluster classifiers increases the discriminative power by pre-
venting object window drifts and avoiding inaccurate assign-
ments. In other words, using multiple background models is
preferable to employing only one.

We exploit structured output support vector machines
(SSVM) to obtain an individual tracker for each contextual
object-cluster pair. First, we train independently each classifier
with their respective contextual clusters using low-level feature
descriptors such as histogram of intensity. Then, a unifying
SSVM is constructed with all negative samples to learn the
importance weights corresponding to each contextual SSVM,
by concatenating their responses of the training sample into
a feature vector. This lends itself to naturally and optimally
combining the outcomes from multiple trackers. More details
can be found in Section III-B.

On the TB50 dataset [13], our method improves the preci-
sion score around 11.3% overall. For specific attributes, the
performance improvement is up to 23.5% for the deformation
case, 17.0% for the fast motion case, 23.7% for the motion blur
case, 12.2% for the occlusion, and 7.6% for the background
clutter case in comparison to the baseline tracker that uses a
single background model. Similarly, our results on the popular
VOT2014 [14] and OTB datasets [15] are superior to the
baseline tracker by a significant margin.

II. RELATED WORK

For completeness, we provide a brief overview of the most
relevant works and refer readers to the object tracking surveys
[15], [16], [17].

Among notable approaches, Avidan [6] proposed an SVM-
based tracking-by-detection algorithm for distinguishing the
object from its close neighborhood. Tian et al. [18] utilized
the ensemble version of the linear SVM classifiers that can
be weighted according to their discriminative abilities at each
frame. Henriques et al. [19] addressed the high redundancy
of the negative samples due to overlapping pixels with cir-
culant matrix and diagonalized it with the Discrete Fourier
Transform, reducing both storage and computation by several
orders of magnitude. Li et al.[20] partitioned the entire image
sequence into spatially and temporally adjacent sub-sequences.
They then trained an SVM classifier for object/non-object
classification on each of these sub-sequences. A spatiotem-
poral weighted Dempster-Shafer scheme was presented to
combine the discriminative information from these classifiers.
Nevertheless, none of these algorithms consider the available
contextual information as we do.

Recently, deep convolutional neural network (CNN) based
solutions have achieved significant advances in object detec-
tion and classification tasks [21]. For visual object tracking,
[22] employs a candidate pool of multiple CNNs as a data-
driven model of different instances of the target object. In-
spired by this, [23] interprets the hierarchies of convolutional

layers as a nonlinear counterpart of an image pyramid rep-
resentation and adaptively learns correlation filters on each
convolutional layer to encode the target appearance. The recent
work in [24] pre-trains a CNN using a large set of videos
with ground truth trajectories. The network is composed of
shared layers and multiple branches of domain-specific layers
and trained with respect to each domain iteratively to obtain
generic target representations in the shared layers. However,
utilizing the CNN framework to explore the contextual infor-
mation for a tracker remains an open problem.

Towards incorporating larger receptive fields, Yang et
al. [25] proposed a context-aware tracking algorithm that
considers a set of auxiliary objects as the context of the
foreground. These auxiliary objects need to satisfy conditions
such as persistent co-occurrence with the foreground and con-
sistent motion correlation. These conditions may not be easily
satisfied in practice. [26], [27], [28] used similar concepts
termed as ‘distracters’ and ‘supporters’. Distracters [27], [28]
are regions that have similar appearance as the target, and
supporters [26], [27] are regions or features around the target
with consistent co-occurrence and motion correlation in a
short time span. These methods require careful maintaining
models for distracters and supporters. Li et al. [7], showed
that the high-order contextual information from samples can
increase the robustness of the classifier to noise. The high-
order context is defined as a group of samples having some
common properties. Each sample in the high-order context is
influenced by other samples in the same high-order context.
For their tracker, the similarity measure depends on not only
two individual samples but also their corresponding contexts.
Even though the high-order context provides complementary
information to counteract the impact of noise, it still lacks a
mechanism to incorporate background context.

The idea of splitting the data into groups and to train a
separate classifier for each group to handle the large intra-class
variability is proved to be successful, mainly based on boosting
algorithms in image classification and object detection [29],
[30], [31], [32]. In particular, Godec et al. [31] introduced a
set of virtual classes generated by a context-driven clustering
to cope with the intra-class variability in object detection. They
used an online multi-class classifier to initiate and update new
virtual classes, and then label a given patch by one of the
virtual classes.

Our method does not require explicit labeling of the
background into multiple classes. Instead of using a multi-
class structure, our tracker operates in a more efficient and
consistent manner when it maintains the set of object-versus-
contextual clusters. Thus, it is a binary labeling scheme. In
addition, not having to explicitly label for multiple background
classes enables our method to construct more discriminative
models that significantly improve the tracking performance.

Another related work is the distance metric learning that
seeks an effective and discriminative metric space where
both intra-class compactness and inter-class separability are
maximized. Li et al. [33] proposed a metric-weighted linear
representation of appearance to capture the interdependence
of different feature dimensions and developed two online
distance metric learning methods using proximity comparison
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Fig. 2: Two instances of contextual clusters. Middle column:
one foreground cluster (green) and ten contextual clusters
(red). Each row corresponds to a separate cluster. Last column:
the 2D layout of samples in principal components from the t-
SNE dimension reduction [36] for visualization. 0: foreground.
1-10: color coded background clusters. As visible, there is a
significant variance in the background samples, which may
hinder the performance of a monolithic binary classifier.

information and structured output learning. Similarly, [34]
observed that different visual metrics should be optimally
learned for different candidate sets in the context of human
reidentification problem, which is to match persons observed
in non-overlapping camera views. This approach selects and
reweights the training samples according to their visual sim-
ilarities with the query sample and its candidate set. In
contrast, our work does not handle the discriminative metric
space. Instead, we explore the contextual information for the
background samples via explicitly grouping them into clus-
ters. We deploy a top-level SSVM to fuse the discriminative
information from the individual clusters’ SSVMs, which can
be considered relevant to the metric learning concept.

III. TRACKING WITH MULTIPLE CLUSTERS

The basic idea of tracking-by-detection is to establish object
correspondence between consecutive frames using an object
detector. Many recent state-of-the-art trackers are often based
on this scheme [15], [35], [12], [16], resulting in improved
accuracy and robustness of tracking performance. One reason
is that an online updated classifier helps to address challenging
situations such as appearance variations, partial occlusions,
and background clutters in a single, unified manner.

Given an estimated object bounding box B∗n−1 in a previous
frame n−1, the tracker proceeds to find a new object location
B∗n at the current frame n through a dynamically maintained
and updated classification confidence function F as follows:

B∗n = arg max
Bn∈Sn(B∗

n−1)

Fn−1(Bn), (1)

where Sn(B∗n−1) denotes the set of candidates in frame n,
sampled around the previous object location B∗n−1 within a
search radius. For example, the search radius of 30 pixels was
used in [35].

As mentioned above, to efficiently maintain and update
a classification confidence function Fn−1 → Fn is key to

the success. In this regard, previous work (e.g. [12]) often
use multiple-instance-learning to compose the positive and
negative training samples (this can be also viewed as the online
labeling task as in [35]) against label noise issue. However,
many of these methods make the implicit assumption that the
background (and the context) conform to a single, monolithic,
possibly homogeneous class, which is rarely the case.

In contrast, our method does not assume the background
samples have an identical distribution, or they belong to a
single semantic class. We argue that, the appearance variance
of the background can be better modeled by a committee
of foreground-versus-contextual-cluster classifiers. Noticing in
practice most tracking failures occur either when a background
element such as background clutter distracts the tracker or
when the tracker slightly drifts and starts accumulating error
until a total breakdown, here we propose constructing fine-
grained boundaries using multiple classifiers on contextual
clusters.

A. Fine-Grained Classifiers

To better capture the latent data distributions of the negative
samples (i.e. background clusters), which can be rather com-
plex, we use unsupervised clustering with temporal continuity
priors.

A simple way to perform this is to use k-means algorithm
to label each negative sample as one of K clusters at every
frame by initiating the iterations with the previously estimated
clusters centers. Alternatively, Hough-forest based cluster-
ing [37] may be used. This method employs a random forest
to cluster patches that have consistent appearance (and spatial
displacement). Yet another solution is a graph mode-seeking
method [7], which can automatically discover the distribution
modes, i.e. dense subgraphs, of a graph characterized by
a baseline kernel. In this work, we suggest the k-means
algorithm mainly due to its computational simplicity.

An illustration of the clustering result is given in Figure 2.
Here, the negative and positive sample set descriptors (480-
dimensional intensity histogram features) are mapped down
to a 2D space for visualization. We use a dimension reduc-
tion technique, t-distributed stochastic neighbor embedding (t-
SNE) [36], which computes a mapping of distances while
preserving the overall global structure. Notice that, each cluster
of the background samples portrays hard negative patterns.
Even though the background samples are collected from dif-
ferent frames, they exhibit patterns that can be clustered into a
few consistent patterns, which will leverage the discriminative
power of the corresponding classifiers.

We select SSVM as the foreground-versus-contextual cluster
classifier, nonetheless our method can be extended to any
object model easily. SSVM is shown to provide better object
localization and tracking performance than other variants of
SVM [38], [39].

Suppose the negative samples {Bi\B∗i : i = 1, . . . , n − 1}
from n − 1 previous frames are grouped into K contextual
clusters {{Bki : i = 1, . . . , n − 1} : k = 1, . . . ,K}, where
Bki denotes the negative samples belonging to the k-th cluster,
{B∗i : i = 1, . . . , n−1} is the set of positives, and Bi is the set



IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

1 

4 

2 

3 

Struck 

Ours 

Fig. 3: Conventional single SSVM (top, from Struck [35])
versus the proposed multiple SSVMs of the contextual clusters
(bottom, each row corresponds to one contextual SSVM).
Green: positive support vectors. Red: negative support vectors.
Notice that the burden of the classification task is reduced
significantly for each contextual SSVM.

of all positive and negative samples at frame i. We separately
train K classifiers to obtain confidence functions for each pair
of the negative cluster {Bki } and the positive set {B∗i }, which
have the form of:

F k
n−1(Bn) =

∑
Bk

i,j∈Vk
n−1

wk
i,jΦ(Bk

i,j , Bn) k = 1, . . . ,K, (2)

where Vk
n−1 is the support vector set of the k-th SSVM after

the training process, and wk
i,j is a scalar weight associated with

the support vector Bk
i,j ∈ Bk

i ∪ B∗i indexed by j from frame
i. The kernel Φ(Bk

i,j , Bn) calculates the affinity between two
feature vectors extracted from Bk

i,j and Bn, respectively.

Here, both Vk
n−1 and wk

i,j are learned using the online
SSVM algorithm “Larank” [40], [41], which is shown to be an
efficient SSVM solver [35]. As the image feature, we employ
intensity histograms from a spatial pyramid [42] to represent
the image patch in Φ(Bk

i,j , Bn) capturing the discriminative
cues between the foreground and background patches. In the
experiment section, we test different 2D kernels including
linear, radial basis function (RBF) and intersection.

We ask the question whether a strong SSVM using RBF ker-
nel with a large number of support vectors, most of which cor-
respond to the previously estimated negative samples, would
achieve the same performance. To our observations, simply
inflating the number of support vectors does not generate a
proportionally more accurate classifier since it either tends to
overfit data or fails to model essential differences between the
object and background samples. As shown in Table IV, a single
very strong classifier results in only marginal improvement
on the performance if any. In Figure 3, we give an example
of the differences between the support vectors maintained by
the tracker that uses a single strong SSVM [35] and by our
proposed contextual SSVMs. It is apparent that the burden of
the classification task is reduced for each contextual SSVM in
our method, comparing to the single SSVM.
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Fig. 4: Hierarchy of classifiers in the proposed tracker. First
layer: K separate SSVMs trained using the positive samples
and the K contextual negative sample sets. Second layer: a
single SSVM is trained to fuse the classification confidences.
All SSVMs are updated online to adapt object appearance and
background changes.

B. Confidence Combination

There are numerous strategies to combine multiple confi-
dence functions including max or average pooling [43], voting,
and multiple kernel learning. These, however, are not capable
of learning an adaptive discriminative model for each video
sequence.

Instead, we treat each confidence function as a feature
generator, and use an additional top layer SSVM as illustrated
in Figure 4 to learn the optimal combination of multiple
confidence function results of K contextual clusters.

In this stage, the negative samples {Bi\B∗i : i = 1, . . . , n−
1} and the positive samples {B∗i : i = 1, . . . , n− 1} are used
to train a top layer discriminant function Fn−1(Bn) as:

Fn−1(Bn) =
∑

Bi,j∈Vn−1

wi,jΨ(Bi,j , Bn). (3)

The difference between Fn−1(Bn) and F k
n−1(Bn) is the

design of the feature for kernel function Ψ(Bi,j , Bn). This
feature concatenates the classification confidences from the
K SSVMs into a K-dimensional vector. Different choices
of kernels are tested in the experimental section. The overall
tracking algorithm is summarized in Algorithm 1.

C. Online Update with Temporally Consistent Clustering

In object tracking, the training data for the object model is
given only in the first frame. The SSVM framework [40], [41]
selects a triplet {i, Bk

i,+, B
k
i,−} and optimizes their correspond-

ing coefficients wk
i,+ and wk

i,− using an SMO-style step [44].
The main step is to choose the negative support vector Bk

i,−
by

Bk
i,− = arg maxBi∈Bk

i
L(Bi, B

∗
i ) + F k

n−1(Bi) (4)

where the loss function L(Bi, B
∗
i ) = 1−(Bi∩B∗i )/(Bi∪B∗i )

defines on the bounding box overlap. Optimizing (4) corre-
sponds to finding such a negative training sample that locates
far from the positive one (high L(Bi, B

∗
i )) yet presents close

appearance (high F k
n−1(Bi)). We use the C++ implementation

from [35] for online optimization.
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Algorithm 1. Two-layer SSVM based Tracker using Multiple
Background Clusters

Tracking
Require: K confidence functions F k

n−1, the top layer
discriminant function Fn−1, previous model B∗n−1 and object
location

1. Generate K confidence scores for each candidate in the
search radius Sn(B∗n−1) in the current image: F k

n−1(Bn) =∑
Bk

i,j∈Vk
n−1

wk
i,jΦ(Bk

i,j , Bn).
2. Compute aggregated confidence score: Fn−1(Bn) =∑

Bi,j∈Vn−1
wi,jΨ(Bi,j , Bn).

Return: New location : B∗n = arg maxBn∈Bn
Fn−1(Bn).

Update
Require: Support vector sets and the corresponding weights
of K contextual cluster SSVMs Vk

n−1, and of the top layer
SSVM Vn−1, the new positive sample B∗n and negative
samples Bn\B∗n.

1. Run k-means initialized with the previously estimated
clusters centers to obtain the new contextual clusters:
{{Bki : i = 1, . . . , n} : k = 1, . . . ,K}.

2. Update the contextual SSVMs: Vk
n ← Vk

n−1 and the
corresponding weights wk

i,j as in Section III-C.
3. Update features for the top layer SSVM:
[F 1

n(Bi), . . . , F
K
n (Bi)], Bi ∈ Bi,∀i ∈ {1, ..., n}, using the

updated contextual SSVMs from 2.
4. Train the top layer SSVM: Vn ← Vn−1 and the corre-

sponding weights wi,j using online optimization with the
features from step 3.

Return: Support vectors {Vk
n | k = 1, . . . ,K}, Vn and the

corresponding weights.

To avoid independently re-clustering and re-optimizing over
the K separate SSVMs at every frame, we benefit from the k-
means initialization. First, we run the k-means multiple times
to obtain a consistent clustering. At every new frame, we
recycle the previous clusters’ centers to initialize k-means
clustering. Since only a portion of the previously clustered
samples change after clustering, we keep the unchanged
support vectors and avoid re-optimizing the SSVMs. To be
specific, we use the processold step in [35] to add an extra
number of negative support vectors, replacing those lost due
to the re-clustering procedure if necessary.

Keeping all available training samples is not computation-
ally and memory-wise efficient, thus we employ the budget
management method used in [45]. This allows at most a
fixed-number (100 in all experiments) of maintained support
vectors. Once this number is exceeded, we remove the most
insignificant support vectors that induce the smallest changes
to the classification boundary.

IV. EXPERIMENTS

Datasets Tested:
We evaluate our method on three recent benchmark datasets:

OTB [15], TB50 [13] and VOT2014 [14]. These datasets pro-

boy 

david2 

dog1 

deer 

coke freeman1 

Jogging 

faceocc2 

trellis 

Fig. 5: Sample sequences from the OTB benchmark dataset
[15] with ground truth object windows (red).

vide a large number of sequences depicting a wide spectrum
of challenging tracking scenarios.

OTB contains 50 video sequences with fully bounding box
annotations. The total number of frames is more than 29, 000,
and for each sequence, the number varies from tens to thou-
sands, e.g. deer (71 frames), skiing (81 frames), dog1 (1350
frames), doll (3872 frames), etc. A few sample sequences with
ground truth annotations are shown in Figure 5.

In comparison to the OTB dataset, TB50 [13] contains
more challenging sequences. Samples can be seen in Figure
7. Many of the TB50 sequences depict strong motion blur
(e.g. blurBody), fast object motion (e.g. dragonbaby), and
intermittent occlusions (e.g. skating2). As visible in Figure 6,
there is a big performance gap for all trackers between OTB
and TB50.

Both benchmarks additionally annotate each sequence glob-
ally with various visual attributes. Some common attributes
available in the benchmarks are:
• Fast Motion - the motion of the ground truth is larger

than tm pixels (tm = 20).
• Motion Blur - the target region is blurred due to the

motion of target or camera.
• Deformation - non-rigid object deformation.
• Occlusion - the target is partially or fully occluded.

In the benchmarks, individual sequences are not per-frame
annotated. For example, a sequence has the occlusion attribute
if the target is occluded at any frame in the sequence. Although
many factors could contribute to the performance, these at-
tributes help us to diagnose the weaknesses and strengths in a
more detailed way.

The sequences embodied in the VOT2014 benchmark are
selected from widely used datasets in literature, including
the Amsterdam Library of Ordinary Videos for tracking
(ALOV++) [50] and OTB. It comprises a set of 25 sequences,
which cover various real-life visual phenomena. The duration
of these sequences are relatively short in order to keep the
computational load of experimental evaluations reasonably
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Fig. 6: Success ratio plots on the TB50 and OTB datasets. Trackers are ranked by the Area Under Curve (AUC) of the success
ratio plots. As visible, our method (red) achieves the best performance on both datasets.

TABLE I: Area Under Curve (AUC) of success ratio plots and precision scores (at 20 pixels threshold) on TB50 and OTB
benchmark datasets for the one-pass evaluation (OPE). fps: frames-per-second. Best in bold. Our performance on TB50 when
we adapt to scale changes is even higher; 42.0/62.5.

Datasets Ours Struck [35] KCF [19] SCM [46] TLD [47] CN [48] ASLA [4] CSK [49]
TB50 (50) 41.7/61.2 36.3/49.9 40.2/61.1 35.5/47.8 32.1/45.0 33.4/42.2 35.8/46.2 30.7/41.8
OTB (50) 51.5/72.5 47.2/65.3 50.7/72.9 49.8/64.8 43.4/60.1 41.1/55.3 43.4/60.1 39.6/54.1
fps 2.3 4.8 70.9 0.3 8.8 27.2 3.8 18.6

low. Unlike OTB and TB50, VOT2014 labels each frame
in each sequence with five visual attributes. It also features
a reinitialization evaluation scheme. After the tracker loses
the target object during tracking, which is the case when
the overlap measure with the ground truth becomes zero, the
tracker is reinitialized five frames after the failure. This scheme
measures the robustness of trackers by counting how many
times they fail in a sequence.

Evaluation Metrics:
We use the metrics and the source code provided by these

benchmarks. On OTB and TB50, the performance is evaluated
using the precision score and success ratio metrics. The preci-
sion score calculates the rate of frames whose center location
is within a certain threshold distance with the ground truth.
Here, a commonly used threshold is 20 pixels as recommended
by the benchmark protocol. This metric emphasizes how well
a tracker is able to clasp the target. The success ratio calculates
the same ratio based on bounding box overlap threshold
(B∗ ∩Bgt)/(B

∗ ∪Bgt), where B∗ and Bgt are the estimated
and ground truth bounding boxes, respectively. This metric

TABLE II: Robustness performance on VOT2014.

Robustness Rank
Ours 13.22
DSST [51] 16.75
KCF [19] 17.95
SAMF [52] 17.81
MCT [14] 16.34
MUSTer [53] 18.49
MEEM [54] 16.42
Struck [35] 22.98

indicates how well a tracker adapts and covers the target. A
typical value is 0.5 as used in object detection evaluation [55].

We employ the one-pass evaluation (OPE) that takes the
ground truth at the first frame as the initialization bounding
box then run trackers until the last frame.

For VOT2014, the benchmark provides a ranking based on
the robustness performance measure. As mentioned above, the
robustness measures how many times the tracker loses the
target (failures). The ranking scheme considers the statistical
significance of performance differences to ensure an objective
comparison, e.g., trackers are equally ranked if there is only a
negligible difference from a practical point of view. We also
calculate the ranking result based on the accuracy metric,
which measures how well the bounding box predicted by
the tracker overlaps with the ground truth bounding box. We
test all trackers 15 times on each sequence to obtain reliable
statistics on performance measures.

Compared Methods:

OTB benchmark employed 29 recent and publicly available
trackers and TB50 employed 31 trackers. For clarity in the
performance graphs, we compare our method against the
top ranked trackers in these datasets including Struck [35],
SCM [46], TLD [47], ASLA [4] and CSK [49]. We addi-
tionally compare with two other recent trackers: KCF [19]
and CN [48], which report strong performance. Struck [35]
uses a similar SSVM framework. Unlike our method, it treats
tracking as a single, binary foreground-versus-background
classification problem thus can be considered as the baseline
tracker. KCF [19] tackles the undersampling issue with cir-
culant matrices. Similar to Struck, KCF tracker considers a
single background model.
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Fig. 7: Qualitative comparisons with the state-of-the-art trackers on videos from TB50. (a) Bird1; (b) BlurBody; (c) Singer2;
(d) DragonBaby; (e) Human9; (f) Skating2; (g) Tiger2. Our method attains robust tracking performance in challenging scenarios
including fast motion, motion blur, deformation, and occlusion. Notice that, the object window size in each video is fixed.

VOT2014 challenge collected 38 trackers for evaluation,
including KCF and Struck. For readability of the performance
graphs, we compare with the top ranked trackers on VOT2014
with two additional methods, MEEM [54] and MUSTer [53].

We use the publicly available code and default settings from
the original authors for a fair comparison.

Benchmark Results:
The tracking results for the benchmark datasets are pre-

sented in Table I, Figure 6, Table II and Figure 8.
As shown, our method outperforms all other trackers includ-

ing more recent approaches CN and KCF on both TB50 and
OTB in both the precision score and the Area Under Curve
(AUC) of the success plot. On VOT2014, our method achieves
the best robustness rank among all state-of-the-art. It exhibits
consistent performance for all three benchmarks as well.

Our method of using multiple backgrounds also signifi-
cantly improves its baseline tracker (Struck). On the OTB
dataset, our improvement is significant; 4.3% for the AUC
and 7.2% for the precision score. On the more challenging
TB50 dataset, we achieve even a greater improvement; 5.4%
for the AUC and 11.3% for the precision score. On VOT2014,
our method boosts the robustness rank from 22.98 to the
best score 13.22. These results demonstrate that our multiple-
contextual-clusters method remarkably benefits discriminative
classification schemes for tracking.

Sample tracking results of our method and the top per-
forming state-of-the-art trackers are given in Figure 7 for
qualitative analysis. As visible, our method tracks the target
objects accurately over many various challenging scenarios,
where all others fails (e.g., Struck,, SCM, TLD, etc.).
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Attributes (TB50) Ours Struck [35] KCF [19] SCM [46] TLD [47] CN [48] ASLA [4] CSK [49]
FM (25) 41.6/59.5 34.4/42.5 39.0/54.0 25.2/29.6 35.6/46.5 30.9/35.2 25.0/26.0 26.4/33.7
MB (19) 42.4/59.2 30.9/35.5 40.6/56.4 21.7/25.1 39.3/49.7 31.1/36.0 23.3/25.5 29.8/36.4
DEF (23) 43.6/65.0 32.5/41.5 39.8/58.2 28.5/40.3 24.8/33.4 32.1/35.9 34.7/46.9 25.8/33.4
IPR (29) 41.4/58.0 34.3/45.2 38.7/58.7 34.5/46.2 33.1/45.8 36.4/48.5 33.9/43.9 29.8/40.6
OPR (32) 40.2/60.3 35.3/49.2 39.5/59.8 35.5/49.1 29.0/41.3 32.6/42.4 38.0/49.2 26.2/36.4
OV (11) 42.4/68.5 33.9/46.1 32.8/44.1 27.9/35.8 30.8/41.6 30.6/35.5 31.0/38.3 21.3/25.6
OCC (29) 40.5/62.0 35.6/49.8 39.5/60.4 34.8/48.0 27.4/39.5 32.0/40.7 36.7/48.5 26.5/37.3
BC(20) 39.0/55.2 36.5/47.6 41.7/62.3 36.2/46.6 29.5/39.9 35.6/43.7 39.8/50.0 34.3/46.7
SV (38) 35.9/54.7 34.0/47.5 35.2/56.5 37.0/49.7 30.0/42.4 32.4/35.9 35.8/46.3 26.7/36.6

TABLE III: Area Under Curve (AUC) of success ratio plots and precision scores (at 20 pixels threshold) on TB50 dataset
attributes. FM: fast motion, MB: motion blur, DEF: deformation, IPR: in-plane rotation, OPR: out-of-plane rotation, OV:
Out-of-view, BC: background clutters, SV: scale variation. Best results are shown in bold.
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Fig. 8: Accuracy-robustness ranking plots of our method and
top ranked methods on VOT2014. Our tracker provides the
best trade-off between accuracy and robustness

To demonstrate that simply increasing the complexity of
a single classifier is not an effective model for tracking and
thus cannot achieve a better performance as our method,
we evaluated the performance of Struck [35] with increased
number of support vectors. The results are given in Table IV
where Struck500 denotes the singe SSVM based tracker using a
maximum of 500 support vectors. The original Struck uses 100
support vectors. It is apparent that insignificant improvement
is obtained by increasing the number of support vectors albeit
considerable computational expense.

Performance on Attribute Categories:
To obtain a better understanding, we evaluated the perfor-

mance of our method on the attribute categories of TB50.
Comparative results are given in Table III, Figure 9 and 10.

For most attributes, such as motion blur, fast motion and
deformation, our method achieves superior performance. For
motion blur and fast motion, the performance improvement
comes from the fact that our method elegantly instantiates
specific trackers for the contextual cluster of hard negative
samples for the shifted version on the object window, which
provides enhanced localization accuracy. For deformation, our
method allows efficiently distributing the burden of model-
ing the foreground object variations over multiple classifiers,
which would be difficult for a single SSVM to distinguish.
For background clutter and scale change, we have still signif-
icantly better results than the base tracker, i.e. Struck.

TABLE IV: Struck [35] performance on TB50 for different
maximum number of support vectors.

Ours Struck100 Struck200 Struck500

AUC/PS 41.7/61.2 36.3/49.9 35.9/50.6 36.4/50.9
fps 2.3 4.8 4.3 3.7

Implementation Details and Variants:
Our method uses the intersection kernel for confidence

function of the contextual cluster SSVMs, the linear kernel for
the top layer discriminant classifier, and intensity histogram as
low-level features.

We employ the motion model that applies a 2D translation
{(u, v)|u2 + v2 < r2} for simplicity. During tracking we
apply a search radius r = 30 pixels and during updating the
classifier we take a larger radius r = 60 to incorporate possible
nearby hard negatives in the negative samples and to ensure
robustness. We sample candidate object locations on a polar
grid (5 radial and 16 angular divisions, giving 81 locations).

The classification models for both the contextual cluster
SSVMs and the top layer discriminant SSVM are online
updated every 5 frames to trade off between computational
efficiency and robustness. The algorithm parameters involved
in online updating SSVM using “LaRank” [41] are set similar
to [35] for a fair comparison.

As feature, we operate with concatenated 16-bin intensity
histograms from a spatial pyramid of 4 levels. At each pyramid
level l, the underlying patch is divided into l×l cells, resulting
in a D = 480 dimensional feature vector [h1B , ..., h

D
B ]. We also

tested the variants using different image features such as Haar
wavelets and raw image patch. For the features we analyzed:
• Haar feature - 6 different types of Haar-like feature

arranged on a grid at 2 scales on a 4× 4 grid, resulting
in 192-D features, with each feature normalized to give
a value in the range [−1, 1].

• Raw patch - Raw pixel features obtained by scaling a
patch to 16×16 pixels and taking the greyscale value (in
the range [0, 1]). This gives a 256-D feature vector.

TABLE V: Different low-level features. Results on TB50.
Histogram Haar Raw Intensity

AUC/PS 41.7/61.2 39.8/56.1 40.1/58.6
fps 2.3 3.5 3.1
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Fig. 9: Precision score plots on various attribute categories of the TB50 dataset. Trackers are ranked by their precision score
at 20 pixels threshold.
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Fig. 10: Success ratio plots on six attribute categories of the TB50 dataset. Trackers are ranked by their AUC scores. Ours
method has achieved consistently superior performance in various categories.

The comparison of features are available in Table V. Re-
markably, the raw intensity feature performed better than the
Haar feature. One explanation is that the Haar feature is
not sensitive enough to the discriminative yet fine-grained
appearance details.

To further evaluate our method, we examine the effective-
ness of the top layer SSVM by replacing it with commonly
used pooling methods. As discussed in in Section III-B, the
incorporated top layer SSVM is for combining the confidence
function results from the contextual cluster SSVMs. As an
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Fig. 11: Success ratio and precision score plots of our method with different number of clusters. All our variants are better
than Struck.

alternative, we test three different pooling methods to fuse
the confidence scores: mean pooling, median pooling and
maximum pooling. The results are shown in Table VI. As

TABLE VI: Use of different pooling schemes instead of the
top layer discriminant SSVM. Results on TB50.

Ours mean median max
AUC/PS 41.7/61.2 39.8/57.3 39.3/58.2 40.6/59.3

fps 2.3 3.1 3.0 3.1

we can see from the results, all pooling methods cause
inferior performance compared to ours. This is expected as
the incorporated top layer SSVM learns in an online fashion
to trust which contextual cluster classifier instead of blindly
and heuristically choosing one.

We also analyzed the alternative kernel combinations for the
contextual SSVMs and the top layer SSVM. The joint kernel
function Φ(Bk

i,j , Bn) (2) is implemented using the intersection
kernel:

Φ(Bk
i,j , Bn) =

1

D

D∑
d=1

min(hdBk
i,j
, hdBn

).

We use the linear kernel for the top layer discriminant function
Ψ(Bi,j , Bn) (3), which computes the inner products. Results
are shown in Table VII. In this experiment, we set σ = 0.1
for the Gaussian kernel. We observed that the linear kernel
generates inferior results when used in the contextual SSVMs,
however it gives the best accuracy when used in the top
layer SSVM. This is possibly due to the fact that the feature
complexity is significantly different between these two layers.

TABLE VII: Different kernels. Results on TB50.

Contextual
SSVMs

Linear
38.1/52.3

Gaussian
41.1/60.6

Intersection
41.7/61.2

Top Layer
SSVM

Linear
41.7/61.2

Gaussian
40.3/58.7

Intersection
40.7/59.1

For k-means, the cluster number is set to K = 6 for all
experiments. We also tested variants using different cluster

numbers. The results can be seen in Figure 11. As visible in
the graphs, our method is robust against the cluster number
changes, and always better than using a single cluster. This
validates the use of multiple clusters, and multiple classifiers,
for the background samples.

We additionally investigated combining the spatial coordi-
nates of samples with the visual features to enforce spatial
consistency of samples within each cluster. We observed that
this does not improve the performance. Besides, a heuristic
imposition of spatial closeness of samples within the clusters
escalates maintenance issues of clusters, in particular when the
object motion causes the background to change.

Size Adaptation:
Our method uses a simple fixed object bounding box

representation through the tracking process as Struck [35] and
KCF [19]. Yet, it is straightforward to extend our method to
adapt scale and aspect ratio changes by modifying the motion
model from the 2D translation {(u, v)|u2 + v2 < r2, r = 30}
to a 3D or 4D motion models (with scale and aspect ratio
changes: step 0.1, range [0.8, 1.2]). The results are reported in
Table VIII and sample detections are depicted in Figure 12.

TABLE VIII: Adaptation of size change. Results on TB50.

Ours (fixed) Scale Scale+As.Ra.
AUC/PS 41.7/61.2 42.0/62.5 41.5/60.2

fps 2.3 1.1 0.4

As visible, scale adaption further improves the AUC/PS on
TB50. Yet, this increases the computational cost. By adapting
scale, the performance may potentially improve for the scale
variation category. This can be validated from Table III, where
SCM (size adapted) gives better scores for the scale variation
category. However, for attributes such as occlusion and defor-
mation, trackers with fixed object size tend to perform more
robustly.

Possible Failure Cases:
As we can see from Table III, our method performs superior

in most benchmark attributes, however it is among the second
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Fig. 12: Size change adaptation: sample results of our method and the state-of-the-art trackers on videos from TB50. Top
row: CarScale; Bottom row: MotorRolling.

5 

1 

2 

5 

6 

#83

 

 

0

1

2

3

4

5

6

0 

1 

 

 0

1

2

3

4

5

6

4 

3 

Ours Struck 
SCM TLD 

Fig. 13: A failure example from sequence ‘Soccer’ (TB50).
Upper right: 2D layout (t-SNE) of k-means results of training
samples. 0: foreground. 1-6: color coded background clusters.
Bottom: each row corresponds to one contextual SSVM.
Green: positive support vectors. Red: negative support vectors.

best trackers for the scale variation and background clutter
after KCF. One reason for this is that we employed fixed
bounding box sizes, which may have limited its capacity
to acquire correct foreground models when the target object
undergoes drastic scale changes. For the background clutter,
the reason could be that there is no apparent distribution of
multiple clusters exhibited as shown in Figure 13. In this case,
k-means may fail to extract effective contextual clusters as
illustrated in the 2D layout of the clusters and support vectors
of the contextual SSVMs. Notice that, k-means has a random
nature that may lead to this.

Nevertheless, our method of incorporating multiple contex-
tual background clusters is always better than Struck for all

attributes. This corroborates the robustness of our hierarchical
SSVM structure regardless of unstable clustering results of k-
means. We argue that all clusters are subsets of the background
samples, and even potentially irregular clusters contribute to
foreground-background classification task, thus their responses
do not deteriorate the second layer’s prediction capacity.

Computational Complexity:
Our method is implemented in C++ and experiments are

carried out on an Intel Core i7 3.40GHz PC with 4GB memory.
Computational time is reported in Table I. The speed of our
method is 2.3 fps on average without any optimization. The
overall computational cost is comparable to existing methods.
In addition, it is not increased significantly in comparison to
the single SSVM (e.g. [35]) despite we use additional SSVMs.
The reason is that the most time-consuming part in our method
is in the optimizing (4) stage, i.e. exhaustively searching over
the negative sample space to find a negative support vector as
shown in Section III-C. In our method, for each foreground-
versus-contextual cluster SSVM, this search space is greatly
reduced.

V. CONCLUSIONS

We presented a tracking method that tackles the object
detection task by designating multiple classifiers where each
targets discriminating a different background cluster from
object samples, and combining their responses into a top layer
identifying to which pattern of classifier responses indicate
object. This significantly reduces the burden on the classifier,
allows learning of fine-grained yet important decision bound-
aries, and lends itself to efficient and accurate adaption to
object and background changes.

By explicitly grouping the negative samples into multiple
clusters, building multiple foreground-versus-cluster SSVM
classifiers, and employing another single SSVM to learn
the best combination of the confidences generated from the
respective contextual classifiers, the proposed method achieves
superior discriminative power as verified on standard bench-
mark datasets.
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